続き
次にanacondaを入れる
最初普通にanacondaのサイトからインストーラをダウンロードしてきて
$ bash Anaconda3-5.3.1-Linux-x86_64.sh
とインストールしてtensorflowをpipで入れて・・・とやってみたのだが、glibcのバージョンがCentOS7では2.17、tensorflowが2.23を要求するということからドツボにはまり、glibcを別途用意してLD_LIBRARY_PATHで指定して、とか頑張ってみたのだが、今ひとつすっきりしないし、systemを破壊しそうでナニだったことから、anaconda自体をpyenvで隔離することにした。
anaconda はpyenvのもとにインストールし、systemのpython2.7もしくはpython3とは切り離しておく
$ git clone https://github.com/yyuu/pyenv.git ~/.pyenv $ echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.bashrc $ echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.bashrc $ echo 'eval "$(pyenv init -)"' >> ~/.bashrc $ source ~/.bashrc
anacondaは最新版をインストール
$ pyenv install -l | grep anaconda $ pyenv install anaconda3-5.3.1 $ pyenv rehash $ pyenv global anaconda3-5.3.1 # anacondaをpythonのデフォルトに設定 $ echo 'export PATH="$PYENV_ROOT/versions/anaconda3-5.3.1/bin/:$PATH"' >> ~/.bashrc $ source ~/.bashrc $ conda update conda
CUDA toolkitとcudnnはcondaからインストールできるらしい
$ conda install cudatoolkit $ conda install cudnn
tensorflow-gpuのインストールなのだが、どうもpython3.7では動かないらしい
TensorFlowをPython3で使う準備をする(Windows10) : としおの読書生活
というわけでanacondaで使うpythonを3.6に落とす。
$ conda install python=3.6
condaを使ってtensorflowをインストール
$ conda install tensorflow-gpu
pythonを起動してtensorflowがちゃんと入ったか確認してみる
$ python Python 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, 01:22:34) [GCC 7.3.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> from tensorflow.python.client import device_lib >>> device_lib.list_local_devices() 2019-04-18 09:27:07.652574: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX 2019-04-18 09:27:07.786044: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2000084999 Hz 2019-04-18 09:27:07.792889: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x564bc4bd80c0 executing computations on platform Host. Devices: 2019-04-18 09:27:07.793038: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): <undefined>, <undefined> 2019-04-18 09:27:08.049509: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2019-04-18 09:27:08.050256: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x564bc4cc3680 executing computations on platform CUDA. Devices: 2019-04-18 09:27:08.050307: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): GeForce GT 710, Compute Capability 3.5 2019-04-18 09:27:08.050639: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties: name: GeForce GT 710 major: 3 minor: 5 memoryClockRate(GHz): 0.954 pciBusID: 0000:03:00.0 totalMemory: 980.94MiB freeMemory: 958.69MiB 2019-04-18 09:27:08.050682: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0 2019-04-18 09:27:08.060169: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix: 2019-04-18 09:27:08.060206: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0 2019-04-18 09:27:08.060226: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N 2019-04-18 09:27:08.060495: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/device:GPU:0 with 733 MB memory) -> physical GPU (device: 0, name: GeForce GT 710, pci bus id: 0000:03:00.0, compute capability: 3.5) [name: "/device:CPU:0" device_type: "CPU" memory_limit: 268435456 locality { } incarnation: 2232806157292722847 , name: "/device:XLA_CPU:0" device_type: "XLA_CPU" memory_limit: 17179869184 locality { } incarnation: 16136033629533297001 physical_device_desc: "device: XLA_CPU device" , name: "/device:XLA_GPU:0" device_type: "XLA_GPU" memory_limit: 17179869184 locality { } incarnation: 1820044920749343627 physical_device_desc: "device: XLA_GPU device" , name: "/device:GPU:0" device_type: "GPU" memory_limit: 769327104 locality { bus_id: 1 links { } } incarnation: 12295195253859629574 physical_device_desc: "device: 0, name: GeForce GT 710, pci bus id: 0000:03:00.0, compute capability: 3.5" ]
ちゃんと認識した
さて、環境が整ったっぽいのでkerasも入れてテストしてみよう
kerasのインストール
$ pip install keras
kerasのリポジトリをgit cloneしてmnist_cnn.pyというプログラムを走らせてみる
$ git clone https://github.com/fchollet/keras.git $ cd keras/examples $ python mnist_cnn.py Using TensorFlow backend. Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz 11493376/11490434 [==============================] - 5s 0us/step x_train shape: (60000, 28, 28, 1) 60000 train samples 10000 test samples WARNING:tensorflow:From /home/kkuro2/.pyenv/versions/anaconda3-5.3.1/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. WARNING:tensorflow:From /home/kkuro2/.pyenv/versions/anaconda3-5.3.1/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version. Instructions for updating: Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`. WARNING:tensorflow:From /home/kkuro2/.pyenv/versions/anaconda3-5.3.1/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. Train on 60000 samples, validate on 10000 samples Epoch 1/12 2019-04-18 09:35:51.539905: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX 2019-04-18 09:35:51.551448: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2000084999 Hz 2019-04-18 09:35:51.552561: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x56298dfd6eb0 executing computations on platform Host. Devices: 2019-04-18 09:35:51.552623: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): <undefined>, <undefined> 2019-04-18 09:35:51.683502: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2019-04-18 09:35:51.684277: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x56298e0c23d0 executing computations on platform CUDA. Devices: 2019-04-18 09:35:51.684383: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): GeForce GT 710, Compute Capability 3.5 2019-04-18 09:35:51.684947: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties: name: GeForce GT 710 major: 3 minor: 5 memoryClockRate(GHz): 0.954 pciBusID: 0000:03:00.0 totalMemory: 980.94MiB freeMemory: 958.69MiB 2019-04-18 09:35:51.685056: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0 2019-04-18 09:35:51.686590: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix: 2019-04-18 09:35:51.686655: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0 2019-04-18 09:35:51.686696: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N 2019-04-18 09:35:51.687099: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 733 MB memory) -> physical GPU (device: 0, name: GeForce GT 710, pci bus id: 0000:03:00.0, compute capability: 3.5) 2019-04-18 09:35:57.798268: I tensorflow/stream_executor/dso_loader.cc:152] successfully opened CUDA library libcublas.so.10.0 locally 128/60000 [..............................] - ETA: 1:30:39 - loss: 2.2983 - acc 256/60000 [..............................] - ETA: 45:50 - loss: 2.2962 - acc: (中略) 59776/60000 [============================>.] - ETA: 0s - loss: 0.0267 - acc: 0.959904/60000 [============================>.] - ETA: 0s - loss: 0.0269 - acc: 0.960000/60000 [==============================] - 76s 1ms/step - loss: 0.0271 - acc: 0.9917 - val_loss: 0.0344 - val_acc: 0.9881 Test loss: 0.03438230963442984 Test accuracy: 0.9881
という感じにテスト完了。ちゃんと機能しているっぽい。
epoch=20の学習によって損失値が
loss: 2.2962
loss: 0.0271
と下がっていることがわかる。
めでたしめでたし
batch_size = 128
num_classes = 10
epochs = 12
GPUあり00:15:28
GPU有り無しでどの程度違うのかはテストしてみないとな
ただ、GT710のメモリ1Gではちょっと足らないっぽいな。Running low on GPU memoryって警告が出っぱなしで、相当足を引っ張ってたっぽい
追記
ちなみにCPUの方は6core/12threadあるけど、1コア分しか働いてないね。サーバ本体のメモリは4GBしか積んでないけど、64%使用程度なので、十分らしい。
あえてGPUを使わずCPUだけを使って行うときは
$ export CUDA_VISIBLE_DEVICES=""
というふうにする
epoch=1でテストランしてみたところ
GPUあり:79秒
GPUなし:108秒
36%の高速化(w
と流石にローエンドGPUだけあって差はそんなもんか、というレベルだった。
#こりゃ手持ちの6core/12thread x 2のサーバでCPUだけでやったほうが速いんちゃう?
GPUメモリ不足が致命的なのかな。batch_sizeを下げるとかチューニングが必要なのかも
なお、GPUなしで走らせると
確かにCPUがフル回転している
終わったら
unset CUDA_VISIBLE_DEVICES
でGPU使う設定に戻しておく